Description
This dataset includes denitrification rates across a typical northern Gulf of Mexico salt marsh landscape that included a natural marsh, a tidal creek, and a 21-year-old restored salt marsh. Denitrification capacity, measured with the isotope pairing technique on a membrane inlet mass spectrometer, was comparable across the sites despite significant differences in above and below ground characteristics. Total extractable ammonium concentrations and sediment carbon content were higher at the natural marsh compared to the restored marsh. Hydrogen sulfide concentrations were highest at the creek compared to the vegetated sites and lowest at the restored marsh. This suggests that marsh restoration projects reestablish nitrogen removal capacity at rates similar to those in natural systems and can help to significantly reduce nitrogen loads to the coastal ocean.
Purpose
This dataset on denitrification rates in restored and a nearby natural marsh are used to demonstrate that restored marshes can achieve nitrogen removal capacity that is similar to that natural marshes. This is despite some differences with the lower carbon content and total extractable ammonium and porewater phosphate, and nitrate and hydrogen sulfide concentrations compared to the natural marsh. While not all ecosystem attributes recover at the same rate following restoration, functions like nitrogen removal appear to recover and help with removing nitrogen that would otherwise be exported to nearby coastal waters.
Suggested Citation
Mortazavi, Behzad; Kleinhuizen, Alice (2021). Denitrification Capacity of a Natural and a Restored Marsh in the Northern Gulf of Mexico from 2014-02-27 to 2015-02-26 (NCEI Accession 0223379). [indicate subset used]. NOAA National Centers for Environmental Information. Dataset. https://www.ncei.noaa.gov/archive/accession/0223379. Accessed [date].